
Introduction to R
Santiago Caño Muñiz, Dr Aaron Weimann, Dr Chris Ruis

https://aweimann.github.io/floto-lab-learning-bioinformatics/docs/

Learning to program is learning to think
The goal

Learning R in a workshop is an impossible task. Hence, our goal is to
illustrate the capabilities of this tool. How programming can make
your work much easier.

2

Why learn R?
A way to represent ideas

3

Age Sex District Shamba Trypanosoma Filaria
25 M Sese Island Sewana + +
20 M Sese Island Kaganda I - +
25 M Sese Island Semagala I + +
30 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
25 M Sese Island Buvovu I - +
25 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
30 M Sese Island Buvu I - +
35 M Sese Island Semagala I - -
20 M Sese Island Semagala I - -
…… …… …… …… …… ……
…… …… …… …… …… ……
…… …… …… …… …… ……
25 M Sese Island Semagala I + -
35 M Sese Island Bunami I + +

Presenter Notes
Presentation Notes
Statistics seems something we have to do in order to organise our inferences about the world.
So let´s say we have a list of cars, so we know their efficiency and power.
The list as such doesn’t tell us much.
We could, however, arrange the data in such a way that we could observe new relations.
This allow us to model the data in such a way that if we had a question about a car we have never seem, we could answer with quite good accuracy.

Why learn R?
A way to represent ideas

4

Age Sex District Shamba Trypanosoma Filaria
25 M Sese Island Sewana + +
20 M Sese Island Kaganda I - +
25 M Sese Island Semagala I + +
30 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
25 M Sese Island Buvovu I - +
25 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
30 M Sese Island Buvu I - +
35 M Sese Island Semagala I - -
20 M Sese Island Semagala I - -
…… …… …… …… …… ……
…… …… …… …… …… ……
…… …… …… …… …… ……
25 M Sese Island Semagala I + -
35 M Sese Island Bunami I + + Dr D. Bruce, 1903

Presenter Notes
Presentation Notes
Statistics seems something we have to do in order to organise our inferences about the world.
So let´s say we have a list of cars, so we know their efficiency and power.
The list as such doesn’t tell us much.
We could, however, arrange the data in such a way that we could observe new relations.
This allow us to model the data in such a way that if we had a question about a car we have never seem, we could answer with quite good accuracy.

5

Age Sex District Shamba Trypanosoma Filaria
25 M Sese Island Sewana + +
20 M Sese Island Kaganda I - +
25 M Sese Island Semagala I + +
30 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
25 M Sese Island Buvovu I - +
25 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
30 M Sese Island Buvu I - +
35 M Sese Island Semagala I - -
20 M Sese Island Semagala I - -
…… …… …… …… …… ……
…… …… …… …… …… ……
…… …… …… …… …… ……
25 M Sese Island Semagala I + -
35 M Sese Island Bunami I + +

Why learn R?
A way to represent ideas

Presenter Notes
Presentation Notes
Statistics seems something we have to do in order to organise our inferences about the world.
So let´s say we have a list of cars, so we know their efficiency and power.
The list as such doesn’t tell us much.
We could, however, arrange the data in such a way that we could observe new relations.
This allow us to model the data in such a way that if we had a question about a car we have never seem, we could answer with quite good accuracy.

The cycle of data analysis
One ring to model them all

6

Information

Explore

Abstraction

Validation

What’s R
A tool to make life easier

7

Dynamic programming

Open source

Active community

Endless packages

Presenter Notes
Presentation Notes
Orientado a estadística�Dentro del campo del análisis de datos, R te permite realizar cualquier tipo de abstración que te imagines

Comunidad muy activa�La facilidad de uso permite a los usuarios subir “paquetes” con nuevas funciones. Esto nos permite empezar nuestro trabajo donde otros terminaro.

Desventajas�R en si no es un lenguaje de programación, sino un entorno. Como consecuencia, esto ha hecho que a nivel de rendimiento y flexibilidad R no esté a la altura de otros lenguajes como python

How was my first experience
What’s R?

8

Presenter Notes
Presentation Notes
R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and graphical techniques, and is highly extensible.

Many users think of R as a statistics system. We prefer to think of it of an environment within which statistical techniques are implemented. R can be extended (easily) via packages.

The best thing about R it is that it was developed by statisticians. The worst thing about R is that… it was developed by statisticians. Bo Cowgill.

Arrange files and folders
Thinking in hierarchical order

9

® http://nikola.me/folder_structure.html

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

http://nikola.me/folder_structure.html

Arrange files and folders
Naming… really matters?

10

Copyright: http://10pm.com/

What I do

Will we remember what does it means at
the end of the thesis or Project? Avoid: ?, $,%, ^, &, *, (,),-,#, ?,,,<,>, /, |, \, [,] ,{, and };

EXP_AAAAMMDD_NOMBRE_VX.X.csv

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

http://10pm.com/

RStudio
A helper in our quest

11

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

Inside R
RStudio

12

Terminal

Editor

Plots, files, packages….

Objects and variables

Inside R
Importing data

13

Inside R
Exploring datasets

14

For example
Time to program

The foundation of R
16

Input Output

The heir of mathematical notation

𝐴𝐴 = 𝑓𝑓(𝑟𝑟) = 𝜋𝜋𝑟𝑟2

𝑆𝑆 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝑑𝑑𝑓𝑓(𝑟𝑟)
𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝑟𝑟

𝑓𝑓(𝑥𝑥)

Presenter Notes
Presentation Notes
Una función “f de r” nos permite transformar de radio a área
Una función puede ser otra función
El input esperado de una función siempre ha de ser el mismo

The foundation of R
17

Input OutputFunction

Body

Environment

Args.

Functional programming

Presenter Notes
Presentation Notes
For now, just remember that you do things in R by creating and manipulating named objects. You manipulate objects by feeding information about them to functions. The functions do something useful with that information (calculate a mean, recode a variable, fit a model) and give you the results back.

Action <- function(x, y = 0) {

z <- x + y

return(z)

}

But… what’s a function?

R like a super-calc on steroids
18

• Args: List of items, specified by order or name.
• Body: Transformations upon the arguments.
• Env: Variables accessible within the body.

The 3 elements
specify “x” and “y”

Default “y” when
we don’t specify itAdd “x” e “y”

Return the result

But… what’s a function?

R like a super-calc on steroids
19

Intro to functions

runif(n = 10, min = 3, max = 10) # This function generates 10 random numb between 3 and 10
runif(10, 3, 10) # Same but using argument position as reference

runif(n = 10) # Get 10 random numbers within the default range
runif(10) # 10 random numbers within the default range setting n by position

runif(min = -1, n = 3) # Using the name allows the order to be alter

Basic math functions
1 + 8

2 - 9

2 * 3

5/3

Logic operations

R like a super-calc on steroids
20

x == y # Is x equal to y
identical(x, y) # Same as == but using a function
!x # Negate (or logic inversión) of x
x & y # Is x AND y True?
x | y # Is x OR y True?
x < y # Is X Lower than y
x > y # Is X Bigger than y
x <= y # Is X Lower or equal than y
x >= y # Is X Bigger or equal than y
x != y # Is x different from y
xor() # Is only X or Y True?
isTrue() # Is true?

In R you have a function for everything

21

A <- ... # Assigning a variable
c(object, object,...) # Concatenate SAME type objects within a vector
length(object) # Number of elements in an object
str(object) # Show the internal structure of an object
class(object) # Show the class of an object
names(object) # Names of the elements
rm(object) # Remove the object
mean(vector) # Media
median(vector) # Median
sd(vector) # Standard deviation
sqrt(vector) # Square root
log(vector) # Natural logarithm
exp(vector) # E to the power of..

summary() # Summary
getwd() # Where we are working
read.delim() # Imporf files (also read.csv, read.csv2, read.txt, read.table)

R like a super-calc on steroids

mean(1:5, 0.1)
mean(x = 1:5, trim = 0.1)
mean(1:5, trim = 0.1)
mean(x = 1:5, 0.1)

For example
Time to program

The R packages
23

Families of functions comes in packages

• The R community that develops related functions adds them in a library that other users can
download and install.

• This allows us to start our work where others finished and focus our efforts on a single problem.
• They are usually accompanied by instruction books called " vignette " that explain how to use

the functions of the library.
•

install.package(data.table) # Install library from CRAN
devtools::install_github("/paul-buerkner/brms") # Install from GitHub

library(tidyverse) # Load library
data.table::melt.data.table() # Calling a function from a

library

What they are

[image taken from Ryan
Wesslen presentation]

Presenter Notes
Presentation Notes
La comunidad de R que desarrolla funciones relacionadas las agrega en una librería que otros usuarios puede descargar e instalar
Esto nos permite empezar nuestro trabajo donde otros terminaron y concentrar nuestro esfuerzo en una solo problema
Suelen venir acompañados de libros de instrucciones llamados “vignette” que nos explican como usar las funciones de la librería

24

• In this workshop we will work with the
following bookstores: data.table, magrittr,
ggplot, glmmTMB, mgcv

• Beware of using too many libraries:
• Overlapping functions with the same name
• Reproducibility on other computers

The R packages
Families of functions comes in packages

[image taken from Ryan Wesslen presentation]

Presenter Notes
Presentation Notes
En este taller trabajaremos con los siguientes librerías: data.table, magrittr, ggplot, glmmTMB, mgcv

First contact
Representing mathematical objects

25

Vectors

•0, -8, 3.14…

Numeric: ℝ

•TRUE, FALSE, T, F

Logic: 1|0

•“Que”, “es”, “eso”, “Eso es Queso”

Character

𝑋𝑋 = 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥𝑖𝑖 … … 𝑥𝑥𝑛𝑛 1 + 1 # Hashtag to write down comments
Nombre_x <- valor # Define objects with the operator <-
y <- 1

Principles for naming a variable
• Start with a character, no irregular caraters (&, %, ^, …)
• Brief and descriptive.
• For compound names connect with _

`<-`(x, 2) # Assign
x <- y <- 1 # Assign multiple elements
y <- c(1, -2, 8, 5, 5e5) # Manually define a vector
z <- c("A", "B", "C") # Character vectors
x <- c(FALSE, TRUE, F, T) # Logic
x <- c(1L, 2L, 43L) # Integer

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

First contact
Representing mathematical objects

26

x + y
x * 3
x / y
x^3
1:5 # Dos puntos ":" para indicar secuencias
5:1
y <- c(1, -2, 8, 5, 5e5)
y[3] # Extraer elementos
[1] 8
y[-2] # Numeros negativos para excluir elementos
[1] 1 8 5 5e5
y[2:3] # Extraer secuencia de elementos

Nombrar elementos para crear diccionarios
y <- c("a" = 1, "b" = -2, "c" = 8, "d" = 5, "e" = 5e5)
y[“d"]
[1] 5
y[y > 5] # Extraer elementos usando test lógicos (también ==, >=, <=)

c e
8e+00 5e+05

Vectors

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

First contact
Representing mathematical objects

27

If two vectors have different length, the shorter one is recycled it will recycle to equal the
length of the longest with the longest vector.

x = c(10, 20, 30)
y = c(1, 2, 3, 4, 5, 6, 7, 8, 9)

> y + x
R uses "y" as a 9-element vector and "x" will repeat it 3 times

[1] 11 22 33 14 25 36 17 28 39

Recycling

Presenter Notes
Presentation Notes
If two vectors are of unequal length, the shorter one will be recycled in order to match the longer vector. For example, the following vectors u and v have different lengths, and their sum is computed by recycling values of the shorter vector u.

First contact
Representing mathematical objects

28

Homogeneous
structures

mat <- matrix(c(1, -2, 8, 5, 7, 0, 3, 6, 9),
nrow = 3, ncol = 3)

mat[4] # Use array as vector
[1] 5

mat[1, 2] # mat[fila, columna]
[1] 5

mat[,c(1, 3)]
[,1] [,2]

[1,] 1 3
[2,] -2 6
[3,] 8 9

A <- array(data = 1:27, dim = c(3, 3, 3))
A[2, 2, 3]
[1] 23

Principles for naming a variable
Within R, a matrix is a vector with two extra
attributes:

– Rows
– Columns

[source: University of Cantabria]

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

First contact
Representing mathematical objects

29

Heterogeneous structures
mat <- matrix(c(1, -2, 8, 5), nrow = 2, ncol = 2)
mat[1, 2] # mat[fila, columna]
[1] 8
Animals <- list("a" = c(1, 4, 5, 2),

"b" = c("Cow", "Pig", “Chicken"))

Animals[["a"]][1] # [[to access each item
Animals$a[1] # $ to access every element

Lists and tables
• It contains structures of different types, or

even contain a list
• They can also be of different length

[source: University of Cantabria]

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

x + y
x * 3
x / y
x^3
1:5 # Use colon ":" to indicate sequences
5:1
y <- c(1, -2, 8, 5, 5e5)
y[3] # Extract items
[1] 8
y[-2] # Negative numbers to delete elements
[1] 1 8 5 5e5
y[2:3] # Extract sequence of elements
Name items to create “dictionaries”
y <- c("a" = 1, "b" = -2, "c" = 8, "d" = 5, "e" = 5e5)
y[“d"]
[1] 5
y[y > 5] # Extract elements using logical tests (también ==, >=, <=)

c e
8e+00 5e+05

For example
Time to program

Tables
Data.fame

31

table <- data.frame(Field_N = c(“Nash`s", “Silwood", “Nursery",
“Rush", “Gunness", “Oak Mead", “Church Field"),

Area = c(3.6, 5.1, 2.8, 2.4, 3.8, 3.1, 3.5),
Slope = c(11, 2, 3, 5, 0, 2 , 3),
Vegetation = c(“Grass", “Arabl", “Grass",

“Meadow", “Scrub", “Grass", “Grass"))

Create by adding pre-existing vectors

table <- data.frame(Field_N, Area, Slope, Vegetation)

Join tables

table <- cbind(Field_N, Area, Slope, Vegetation)
table <- rbind(table_1, table_2)

Also via read.*

table <- read.csv(«path/to/my/file")

• Intuitively, data.frame is the classic way to
represent information in our minds.

• Like excel sheet
• Each column represents a vector
• Each row a case

Presenter Notes
Presentation Notes
A data frame is a set of rows and columns.
Each row is of the same length and data type
Every column is of the same length but can be of differing data types
A data frame has characteristics of both a matrix and a list
Bracket notation is the customary method of indexing into a data frame

Tables
Data.fame

32

head(table) # Exploring head/tail values
tail(table)
str(table)

table$Area # Expose values
mean(table$Slope)

summary(table)

table[1, 2] # Access values as matrix
table[, 2:3]
table[, "nombre"] # Access values via naming

• Intuitively, data.frame is the classic way to
represent information in our minds.

• Like excel sheet
• Each column represents a vector
• Each row a case

Presenter Notes
Presentation Notes
A data frame is a set of rows and columns.
Each row is of the same length and data type
Every column is of the same length but can be of differing data types
A data frame has characteristics of both a matrix and a list
Bracket notation is the customary method of indexing into a data frame

An expansion to data.frame

Data.table
33

Properties
• Syntax and usage is similar to

data.frame

• It's extremely fast
• It offers tools for:
• Data aggregate

– Update cells
– Join tables

• Allows elegant notation
• No dependencies

DT[i, j, by]

Where What Which

Data.table
Continuation

34

matrix(data.table)
d <- data.table(mtcars, keep.rownames = TRUE)

> rn mpg cyl disp hp drat wt qsec vs am gear carb
1: Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2: Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3: Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
4: Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
5: Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
6: Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
7: Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4

How to perform simple extraction operations?

d[cyl > 4] # Filter with a simple logical test

d[rn %in% c("Mazda RX4", "Hornet Sportabout")] # Elementros within a vector

d[rn %like% "Mazda"] # Extract similar elements

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

Data.table
Continuation

35

Summarise data

d[, .(g_mean = mean(cyl)), # By group
by = gear]

d[, .(g_mean2 = mean(cyl)),
by = .(gear, vs)] # Multiple groups

d[, Ref_col_mean := mean(hp), # Multiple-groups and create a new column
by = .(gear, vs)]

d[, .(“mean_hp", “mean_cyl"):= # Multiple-groups and multiple columns
.(mean(hp),

mean(cyl),
by = .(gear, vs)]

d[, mean(wt[vs == 0])/mean(wt[vs == 1])] # Vector within a column

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

Summarise data

d <- data.table(mtcars)
d[, .(m = mean(cyl)), # By group

by = gear]

d[, .(m = mean(cyl)),
by = .(gear, vs)] # Multiple groups

d[, m_hp := mean(hp), # Multiple-groups and create a new column
by = .(gear, vs)]

d[, c(“m_hp", “m_cyl"):= # Multiple-groups and multiple columns
.(mean(hp),

mean(cyl)),
by = .(gear, vs)]

d[, mean(wt[vs == 0])/mean(wt[vs == 1])] # Vector within a column

For example
Time to program

Pipes
Moving A %>% B

37

The %>% operator
• One of the most useful and powerful

elements of R.
• The operator ¨%>% helps structure the code

and minimizes the creation of "transitional
variables.

• Requires package magrittr o tidyverse.
• The basic idea:

– x %>% f is f(x)
– x %>% f %>% g %>% h is

h(g(f(x)))

Object %>%
function1(.) %>%
function2(.) ->
result

Placeholder

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

Pipes
38

The %>% operator
• One of the most useful and powerful

elements of R.
• The operator ¨%>% helps structure the code

and minimizes the creation of "transitional
variables.

• Requires package magrittr o tidyverse.
• The basic idea:

– x %>% f is f(x)
– x %>% f %>% g %>% h is

h(g(f(x)))

Extract values
Subset <- table[table$a > "Value_x"]
Sumity the information
mus <- aggregate(test ~ condition, Subset, FUN = mean)
stds <- aggregate(test ~ condition, Subset, FUN = sd)
summary_Ss <- merge(mus, stds, by = "condition")

Create the graph
colnames(summary_Ss)<- c("condition","mus","stds")
ggplot(summary_Ss, aes(x = condition, y = mus)) +

geom_point() +
geom_errorbar(aes(ymin = mus - stds,

ymax = mus + stds)) +
theme_bw()

Example: Representing averages by group

Stack of lazy
variables

Moving A %>% B

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

Pipes
39

The %>% operator
• One of the most useful and powerful

elements of R.
• The operator ¨%>% helps structure the code

and minimizes the creation of "transitional
variables.

• Requires package magrittr o tidyverse.
• The basic idea:

– x %>% f is f(x)
– x %>% f %>% g %>% h is

h(g(f(x)))

summary_Ss <- merge(aggregate(test ~ condition,
table[, table$a > "valor_x"],

FUN = mean),
aggregate(test ~ condition,

table[, table$a > "valor_x"],
FUN = sd), by = "condition")

Create the graph
colnames(summary_Ss)<- c("condition","mus","stds")
ggplot(summary_Ss, aes(x = condition, y = mus)) +

geom_point() +
geom_errorbar(aes(ymin = mus - stds,

ymax = mus + stds)) +
theme_bw()

Example: Representing averages by group Code Unreadable

Moving A %>% B

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

Pipes
40

table[a > “value_x"] %>% # filter
.[, .(mus = mean(test),

stds = sd(test),
by = condition] %>% # Calculate parameters

Graphical representation
ggplot(., aes(x = condition, y = mus) +

geom_point()
geom_errorbar(aes(ymin = mus - stds,

ymax = mus + stds) +
theme_bw()

Example: Representing averages by group

The %>% operator
• One of the most useful and powerful

elements of R.
• The operator ¨%>% helps structure the code

and minimizes the creation of "transitional
variables.

• Requires package magrittr o tidyverse.
• The basic idea:

– x %>% f is f(x)
– x %>% f %>% g %>% h is

h(g(f(x)))

Moving A %>% B

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports.
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically.
The same goes for your workspace, each project has a separate one.
Source files you had open in re-loaded project will open automatically.

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y

install.packages(magrittr)
install.packages(ggplot2)
library(ggplot2)
library(magrittr)
library(data.table)
data("mtcars") # Load data
d <- data.table(mtcars, keep.rownames = T)

d[cyl > 3] %>%
ggplot(., aes(x = disp, y = wt)) +
geom_point() +
theme_bw()

d %>%
lm(formula = disp ~ wt, data = .) %>%
summary

For example
Time to program

Loops and functionals
The essence of programming

42

What are they?
Computers are especially useful when the task
requires repetition
• R provides us with three basic tools to

repeat:
– For

– The of *apply family
• In addition, it is possible to filter with logical

tests:
– if

– ifelse

for(i in x) {

operation

}

each
Set x

Presenter Notes
Presentation Notes
Las personas somos increíblemente buenas en

But that breaks our rule of thumb: never copy and paste more than twice. Instead, we could use a for loop:

Loops and functionals
An example

43

Generate a sample dataset

set.seed(2018)

d <- data.frame(replicate(6, sample(c(1:10, -99), 100, rep = TRUE)))
names(d) <- letters[1:6]
head(d)
a b c d e f

1 4 7 -99 9 9 2
2 6 2 8 10 6 10
3 1 -99 9 3 4 1
4 3 7 7 7 -99 6

How do I calculate the mean of each column?
mean(d$a)
mean(d$b)
mean(d$b)
mean(d$d)
mean(d$e)

Loops and functionals
An example

44

Looping with for

for (i in 1:ncol(d)) { # Using ":" to generate sequence of 1 to the number of columns

x <- mean(d[[i]])
print(x)
}

If we want to save the result, first we create an empty vector (or other format)

medias <- rep(NA, ncol(d))

for (i in seq_along(medias)) {

x <- mean(d[[i]]) # We iterate by column
medias[i] <- x # Save the result in the vector "means", position "i"

}

Loops and functionals
The essence of R

45

*apply(x, Fun = f(x))

To x apply function f

What are they?
Computers are especially useful when the task
requires repetition
• R provides us with three basic tools to

repeat:
– For

– The of *apply family
• In addition, it is possible to filter with logical

tests:
– if

– ifelse

Presenter Notes
Presentation Notes
Las personas somos increíblemente buenas en

But that breaks our rule of thumb: never copy and paste more than twice. Instead, we could use a for loop:

Loops and functionals
An example

46

Iteration-*apply

medias <- apply(X = d, MARGIN = 2, FUN = mean)

> medias
a b c d e f

-4.26 -4.75 -1.85 -5.92 -4.43 1.40

If we also want to specify other arguments, we can indicate them at the end

apply(X = d, MARGIN = 2, FUN = quantile, probs = c(0.1, 0.5, 0.9))

> a b c d e f
10% 1 -9 1 -99 -9 1
50% 4 5 5 5 6 5
90% 9 9 9 9 10 10

Loops and functionals
Basic programming

47

What are they?
Computers are especially useful when the task
requires repetition
• R provides us with three basic tools to

repeat:
– For

– The of *apply family
• In addition, it is possible to filter with logical

tests:
– if

– ifelse

ifelse(test = ***,
yes = Accion_A,
no = Accion_B)

Presenter Notes
Presentation Notes
Las personas somos increíblemente buenas en

But that breaks our rule of thumb: never copy and paste more than twice. Instead, we could use a for loop:

Loops and functionals
An example

48

Basic if loop
if (paper_acepted == TRUE) { # Notice, it only accepts 1 element at a time

print(“We are the best!")

}
Nested if loop
if (publisher == “science”) {

print (“We are the best”)
} else if (publisher == “arXiV”){ # else if allow us to make another question

print (“Andres will kill you”)
} else { # Only else resolve all the remaining cases

print (“If you look for me, I am in the crying room”)
}
Iterate throught if-test throught a vector

all_papers <- c(“accepted”, “accepted”, “accepted”, “rejected”)

ifelse(all_papers == “accepted”,
print(“Fantastic, it’s a science?”),
print(“If you look for me, I am in the crying room”)
)

Loops and functionals
An example

49

Looping with *apply
d <- apply(d, 2, function(x) {ifelse(x == -99, NA, x)})
medias <- apply(X = d, MARGIN = 2, FUN = mean)

Looping with *apply and the pipe operator

medias <- apply(d, 2, function(x) {tmp <- ifelse(x == -99, NA, x)}) %>%
apply(X = ., MARGIN = 2, FUN = mean, na.rm = TRUE)

medias

looping with*apply

medias <- apply(d, 2, function(x) {tmp <- ifelse(x == -99, NA, x)
mean(tmp, na.rm = TRUE)})

> medias
X1 X2 X3 X4 X5 X6

5.585106 5.369565 5.263736 5.866667 5.423913 5.217391

Online resources

Support channels
50

R for Data Science,
H. Wickham &
G. Grolemund

R in a nutshell,
J. Adler

Aprender a
programar en R
P. García Montero

Learning R,
R. Cotton

¡Gracias por
vuestro tiempo!

¿Preguntas?

	Introduction to R
	The goal
	Why learn R?
	Why learn R?
	Why learn R?
	The cycle of data analysis
	What’s R
	What’s R?
	Arrange files and folders
	Arrange files and folders
	RStudio
	Inside R
	Inside R
	Inside R
	Slide Number 15
	The foundation of R
	The foundation of R
	R like a super-calc on steroids
	R like a super-calc on steroids
	R like a super-calc on steroids
	R like a super-calc on steroids
	Slide Number 22
	The R packages
	The R packages
	First contact
	First contact
	First contact
	First contact
	First contact
	Slide Number 30
	Tables
	Tables
	Data.table
	Data.table
	Data.table
	Slide Number 36
	Pipes
	Pipes
	Pipes
	Pipes
	Slide Number 41
	Loops and functionals
	Loops and functionals
	Loops and functionals
	Loops and functionals
	Loops and functionals
	Loops and functionals
	Loops and functionals
	Loops and functionals
	Support channels
	Slide Number 51

