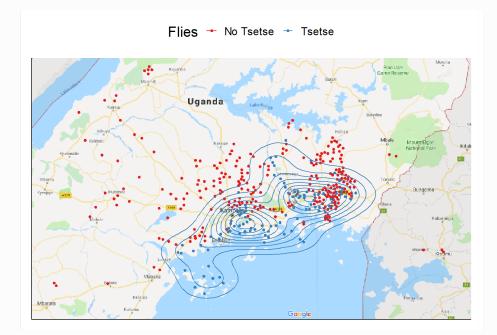
Introduction to **R**

Santiago Caño Muñiz, Dr Aaron Weimann, Dr Chris Ruis

https://aweimann.github.io/floto-lab-learning-bioinformatics/docs/

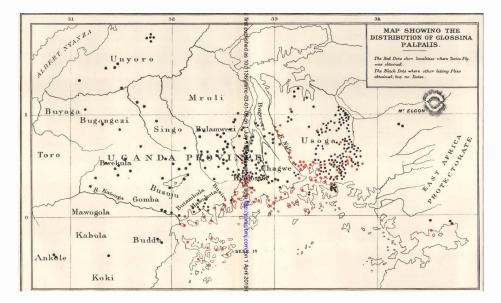
The goal Learning to program is learning to think


Learning R in a workshop is an impossible task. Hence, our goal is to illustrate the capabilities of this tool. How programming can make your work much easier.

Why learn R?

A way to represent ideas

Age	Sex	District	Shamba	Trypanosoma	Filaria
25	Μ	Sese Island	Sewana	+	+
20	Μ	Sese Island	Kaganda I	-	+
25	Μ	Sese Island	Semagala I	+	+
30	Μ	Sese Island	Kaganda I	-	+
20	Μ	Sese Island	Semagala I	-	+
25	Μ	Sese Island	Buvovu I	-	+
25	Μ	Sese Island	Kaganda I	-	+
20	Μ	Sese Island	Semagala I	-	+
30	Μ	Sese Island	Buvu I	-	+
35	Μ	Sese Island	Semagala I	-	-
20	Μ	Sese Island	Semagala I	-	-
25	Μ	Sese Island	Semagala I	+	-
35	Μ	Sese Island	Bunami I	+	+



Why learn R?

A way to represent ideas

Age	Sex	District	Shamba	Trypanosoma	Filaria
25	Μ	Sese Island	Sewana	+	+
20	Μ	Sese Island	Kaganda I	-	+
25	Μ	Sese Island	Semagala I	+	+
30	Μ	Sese Island	Kaganda I	-	+
20	Μ	Sese Island	Semagala I	-	+
25	Μ	Sese Island	Buvovu I	-	+
25	Μ	Sese Island	Kaganda I	-	+
20	Μ	Sese Island	Semagala I	-	+
30	Μ	Sese Island	Buvu I	-	+
35	Μ	Sese Island	Semagala I	-	-
20	Μ	Sese Island	Semagala I	-	-
25	Μ	Sese Island	Semagala I	+	-
35	Μ	Sese Island	Bunami I	+	+

Dr D. Bruce, 1903

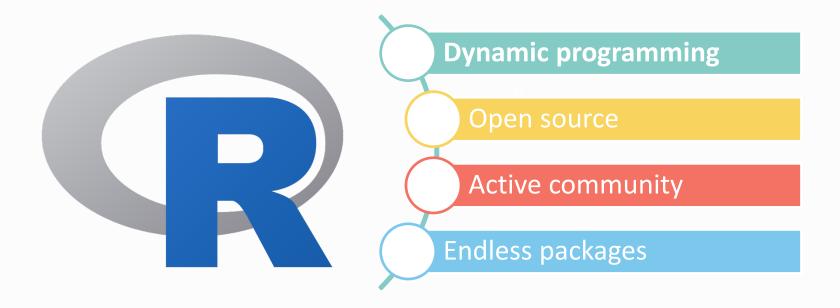
Why learn R?

A way to represent ideas

Age	Sex District		Shamba	Trypanosoma	Filaria
25	Μ	Sese Island	Sewana	+	+
20	Μ	Sese Island	Kaganda I -		+
25	Μ	Sese Island	Semagala I	+	+
30	Μ	Sese Island	Kaganda I	-	+
20	Μ	Sese Island	Semagala I	-	+
25	Μ	Sese Island	Buvovu I	Buvovu I -	
25	Μ	Sese Island	Kaganda I	anda I -	
20	Μ	Sese Island	Semagala I	-	+
30	Μ	Sese Island	Buvu I	-	+
35	Μ	Sese Island	Semagala I	-	-
20	Μ	Sese Island	Semagala I	-	-
25	Μ	Sese Island	Semagala I	+	-
35	Μ	Sese Island	Bunami I	+	+

```
1 library(ggplot2)
 2 library(magick)
 3 library(readx1)
 4 library(ggpubr)
 5 library(data.table)
 7 map_u <- image_read("Figures/Mapa_uganda.png")</pre>
 9 Sick_coord <- read_xlsx(path = "Datasets/D_Bruce_map_dataset_v1.xlsx",</pre>
                            sheet = "Sickness") %>% data.table
10
11 Flies_coord <- read_xlsx(path = "Datasets/D_Bruce_map_dataset_v1.xlsx",</pre>
12
                             sheet = "Flies") %>% data.table
13
14 # Plot 1
15
16 image_ggplot(map_u) +
17
      geom_point(data = Sick_coord, mapping = aes(x = X, y = Y, col = Sickness)) +
18
      geom_density_2d(data = Sick_coord[Sickness == "Present"],
19
                      mapping = aes(x = X, y = Y, col = Sickness)) +
20
      scale_color_brewer(palette = "Set1") +
      labs(x = "", y = "") +
21
22
      theme_pubr(legend = "top", base_size = 20) +
23
      theme(axis.title.x = element_blank(),
24
            axis.text.x = element_blank(),
25
            axis.ticks.x = element_blank(),
26
            axis.title.y = element_blank(),
27
            axis.text.y = element_blank(),
28
            axis.ticks.y = element_blank())
29 # Plot 2
30
31
    image_ggplot(map_u) +
32
      geom_point(data = Flies_coord, mapping = aes(x = X, y = Y, col = Flies)) +
      geom_density_2d(data = Flies_coord[Flies == "Tsetse"],
33
34
                      mapping = aes(x = X, y = Y, col = Flies)) +
35
      scale_color_brewer(palette = "Set1") +
36
37
      labs(x = "", y = "") +
      theme_pubr(legend = "top", base_size = 20) +
38
39
      theme(axis.title.x = element_blank()).
40
            axis.text.x = element_blank(),
41
            axis.ticks.x = element_blank(),
42
            axis.title.y = element_blank(),
43
            axis.text.y = element_blank(),
44
            axis.ticks.y = element_blank())
45
46
```

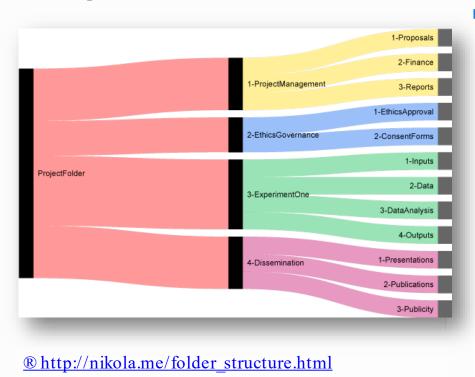
The cycle of data analysis


One ring to model them all

What's R

A tool to make life **easier**

What's R?


How was my first experience

1	1	
2		
2		
2		
4		
5		
6		
7		
8		
9		
10		
11		
12		
12		
14		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
25		
20		
27		
28		
29		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 17 18 9 20 21 22 3 24 25 26 7 27 28 29 30 13 12		
31		
32		

Arrange files and folders

Thinking in hierarchical order

OneDrive - University C)f Cambridge	> Siguiente Nivel > PhD	Data_files		ٽ _ک	Search PhD
Name ^	Status	Date modified Ty	/pe	Size	^	
.Rproj.user	0	01/11/2017 18:14 Fi	le folder		_	
🛛 📙 Data		🔒 🗮 🛛 Data				
DataVisualisation	File	Home Share View				
E2X_Tracer retention series	rite					
E50_blinking_on_pads	$\leftarrow \rightarrow$		niversity Of Cambrid	ge > Siguiente Nivel >	PhD_Data_files → Data	
- Figures	□ Name	^	Status	Date modified	Туре	Size
Microscopy Images						
MyFunctions		oning_plates_optim	\odot	12/06/2018 16:23	File folder	
OneDrive		scarded datasets	\odot	25/10/2017 22:41	File folder	
PhD_1	📙 E1		Ø	25/10/2017 22:29	File folder	
PlateReader	📙 E2		0	25/10/2017 22:35	File folder	
RData	🔤 E2	Extra	Ø	12/03/2018 15:13	File folder	
Rhistory	🖂 📙 E3			↓ [E3		
ATPaseInhibitors	🔤 E3	.3	File Ho	me Share View		
BFLreport	E3	.4	The He			
E1.0	E4		$\leftarrow \rightarrow \cdot$	↑ → OneDrive - Un	iversity Of Cambridge	 Siguiente N
E1.0	E5		□ Name	^	Status	Date modifi
B E2.4	E5	.5	_			Dutemoun
	E F		E3.1_t	00_fum_trp004.fcs	\odot	25/11/2016
E2	E7		E3.1_t	00_fum_trp+_002.fcs	\odot	25/11/2016 (
E2models	E F		E3.1_t	00_glu_trp003.fcs	0	25/11/2016
B E3.0-extensive analysis	E1		E3.1_t	00_glu_trp+_001.fcs	\odot	25/11/2016
B E3	E1		E3.1_t	01_fum_trp008.fcs	0	25/11/2016
E4			E3.1_t	01_fum_trp+_006.fcs	Ø	25/11/2016 (
E5.5CSandIndole		3_limeCherry		01_glu_trp007.fcs	0	25/11/2016 (
E5	E1			01_glu_trp+_005.fcs	Ø	25/11/2016
E6.0	E1			02 fum trp+011.fcs	Ø	25/11/2016
E9		6-M9-indolepulse		02_fum_trp-013.fcs	Ø	25/11/2016
E11	E1	9		02_glu_trp+010.fcs	õ	25/11/2016
E12	E2	0		02_glu_trp-012.fcs	0	25/11/2016 (
E13	🔤 E2	1		03 fum trp+015.fcs	0	25/11/2016 (
E13 Data	🔤 E2	1_Slow	-		0	25/11/2016
E14	E2	3		03_fum_trp-017.fcs		
R E15	🔜 E2	4	-	03_glu_trp+014.fcs	0	25/11/2016
EIS LB	E2	5		03_glu_trp-016.fcs	0	25/11/2016
E15_EB E15_EB E16-M9Pulse	E2	7		04_fum_trp+019.fcs	0	25/11/2016
B E19_merged	E3	6_ion_sensors_treatment		04_fum_trp-021.fcs	\odot	25/11/2016
		9_ionSensor_LBtoAgarPad	-	04_glu_trp+018.fcs	ø	25/11/2016
B E19_OxVI	E4			04_glu_trp-020.fcs	0	25/11/2016
E19_ThT_lonophores		2 02 pHmarker interaction	E3.1_t	05_fum_trp+023.fcs	Ø	25/11/2016
7 items 1 item selected Available when o		3 O2Oscillations	E3.1 t	05 fum trp-025.fcs	0	25/11/2016

Arrange files and folders

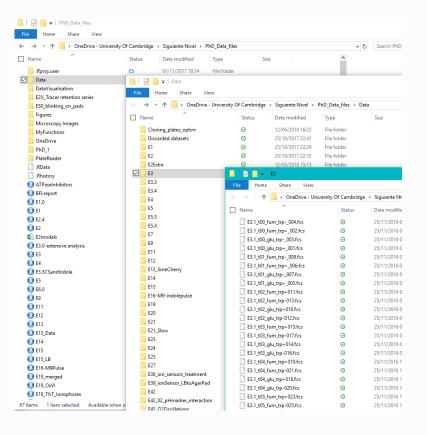
Naming... really matters?

Copyright: <u>http://10pm.com/</u>

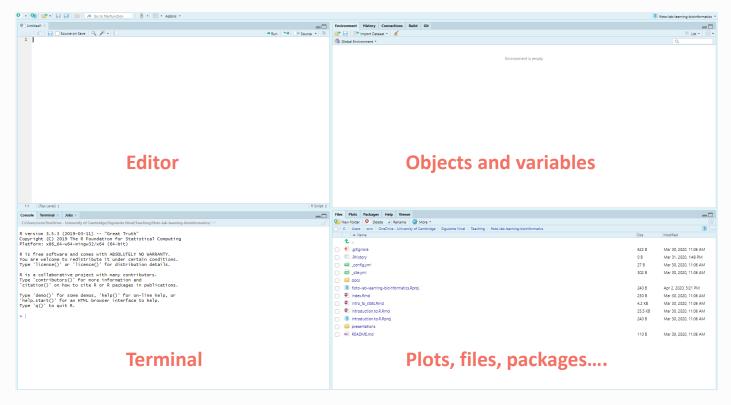
Will we remember what does it means at the end of the thesis or Project?

WhatIdo

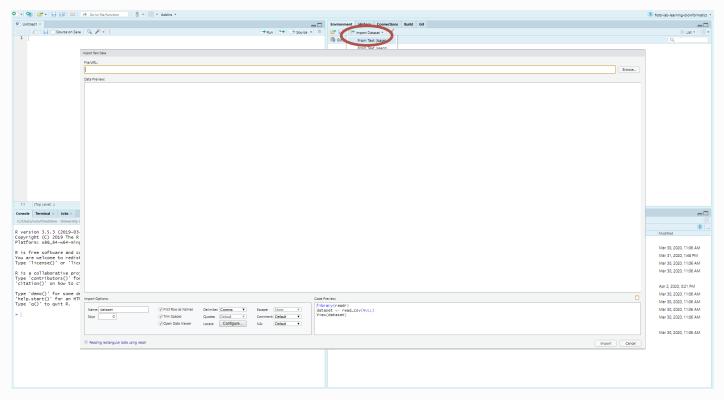
EXP_AAAAMMDD_NOMBRE_VX.X.csv


Avoid: $?_{1}$, , 0, -

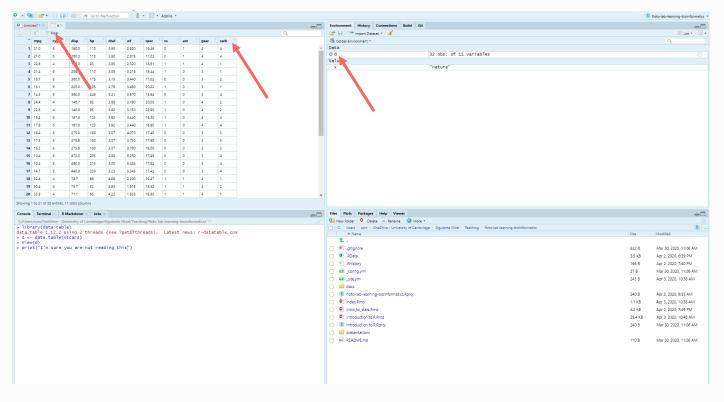
RStudio


A helper in our quest

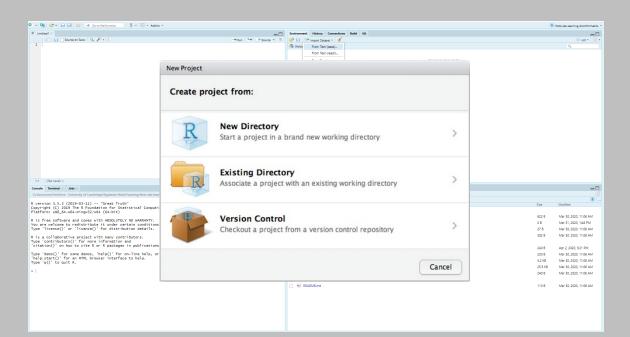
Create p	roject from:	
R	New Directory Start a project in a brand new working directory	>
R	Existing Directory Associate a project with an existing working directory	>
R	Version Control Checkout a project from a version control repository	>


Inside R

RStudio

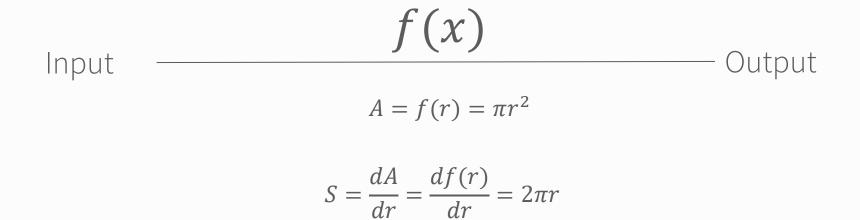

Inside R

Importing data

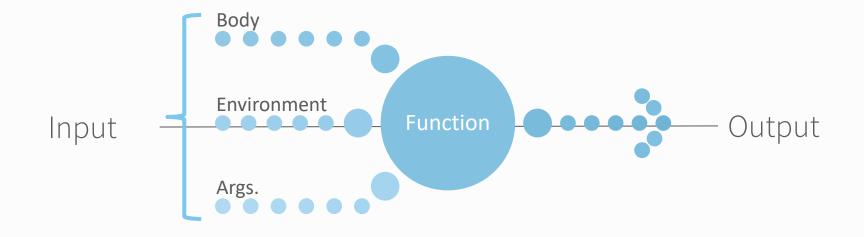


Inside R

Exploring datasets


Time to program

The foundation of R


The heir of mathematical notation

The foundation of R

Functional programming

But... what's a **function?**

```
specify "x" and "y"
Action <- function(x, y = 0) {
           z <- x + y
  return(z)
                           Default "y" when
             Add "x" e "y" we don't specify it
}
```

The 3 elements

- Args: List of items, specified by order or name.
- **Body:** Transformations upon the arguments.
- Env: Variables accessible within the body.

Return the result

```
# Intro to functions
runif (n = 10, min = 3, max = 10) # This function generates 10 random numb between 3 and 10
runif(10, 3, 10)
                                    # Same but using argument position as reference
runif(n = 10)
                                    # Get 10 random numbers within the default range
runif(10)
                                    # 10 random numbers within the default range setting n by position
runif (min = -1, n = 3)
                                    # Using the name allows the order to be alter
# Basic math functions
1 + 8
2 - 9
2 * 3
5/3
```

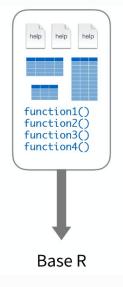
Logic operations

х == у #	Is x equal to y
<pre>identical(x, y) #</pre>	Same as == but using a function
! x #	Negate (or logic inversión) of x
х & у #	IS X AND Y True?
х у #	IS X OR Y True?
х < у #	Is X Lower than y
x > y #	Is X Bigger than y
x <= y #	Is X Lower or equal than y
x >= y #	Is X Bigger or equal than y
x != y #	Is x different from y
xor() #	Is only X or Y True?
isTrue() #	Is true?

In R you have a function for everything

```
A <- ...
                                     # Assigning a variable
                                     # Concatenate SAME type objects within a vector
c(object, object,...)
                                     # Number of elements in an object
length(object)
str(object)
                                     # Show the internal structure of an object
class(object)
                                     # Show the class of an object
names (object)
                                     # Names of the elements
                                     # Remove the object
rm(object)
                                     # Media
mean(vector)
                                     # Median
median(vector)
sd(vector)
                                     # Standard deviation
                                     # Square root
sqrt (vector)
                                     # Natural logarithm
log(vector)
                                     # E to the power of..
exp(vector)
summary()
                                     # Summary
                                     # Where we are working
getwd()
read.delim()
                                     # Imporf files (also read.csv, read.csv2, read.txt, read.table)
```

Time to program For example


```
mean(1:5, 0.1)
mean(x = 1:5, trim = 0.1)
mean(1:5, trim = 0.1)
mean(x = 1:5, 0.1)
```


The R packages

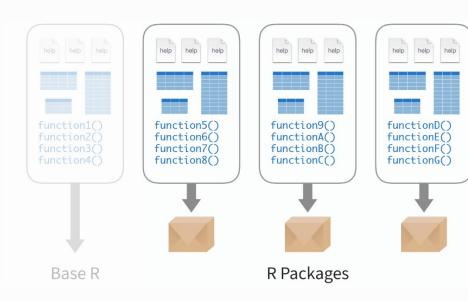
Families of functions comes in packages

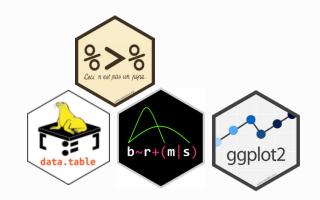
.

[image taken from Ryan Wesslen presentation]

What they are

- The R community that develops related functions adds them in a library that other users can download and install.
- This allows us to start our work where others finished and focus our efforts on a single problem.
- They are usually accompanied by instruction books called "vignette " that explain how to use the functions of the library.


```
library(tidyverse)
data.table::melt.data.table()
```


Load library
Calling a function from a
library

The R packages

Families of functions comes in packages

- In this workshop we will work with the following bookstores: data.table, magrittr, ggplot, glmmTMB, mgcv
- Beware of using too many libraries:
- Overlapping functions with the same name
- Reproducibility on other computers

[image taken from Ryan Wesslen presentation]

Representing mathematical objects

Vectors

$$X = [x_1, x_2, x_3, x_i \dots x_n]$$

1 + 1 Nombre_x <- valor y <- 1 # Hashtag to write down comments
Define objects with the operator <-</pre>

Principles for naming a variable

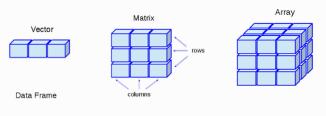
- Start with a character, no irregular caraters (&, %, ^, ...)
- Brief and descriptive.
- For compound names connect with

Representing mathematical objects

Vectors

```
x + y
x * 3
x / v
x^3
1:5
                                    # Dos puntos ":" para indicar secuencias
5:1
y <- c(1, −2, 8, 5, 5e5)
y[3]
                                    # Extraer elementos
[1] 8
y[-2]
                                    # Numeros negativos para excluir elementos
[1] 1 8 5 5e5
                                    # Extraer secuencia de elementos
y[2:3]
# Nombrar elementos para crear diccionarios
v <- c("a" = 1, "b" = -2, "c" = 8, "d" = 5, "e" = 5e5)
y["d"]
[1] 5
y[y > 5]
                                    # Extraer elementos usando test lógicos ( también ==, >=, <= )
   С
         е
8e+00 5e+05
```


Representing mathematical objects


Recycling

```
# If two vectors have different length, the shorter one is recycled it will recycle to equal the length of the longest with the longest vector.
```

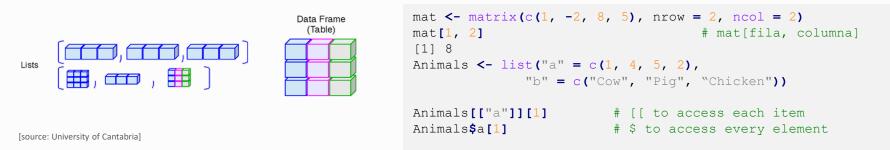
```
x = c(10, 20, 30)
y = c(1, 2, 3, 4, 5, 6, 7, 8, 9)
> y + x
# R uses "y" as a 9-element vector and "x" will repeat it 3 times
[1] 11 22 33 14 25 36 17 28 39
```


Representing mathematical objects Homogeneous structures

[source: University of Cantabria]

Principles for naming a variable

Within R, a matrix is a vector with two extra attributes:


- Rows
- Columns

<pre>mat <- matrix(c(1, -2,</pre>	8, 5, 7, 0, 3, 6, 9), ncol = 3)
mat [4] [1] 5	# Use array as vector
<pre>mat[1, 2] [1] 5</pre>	<pre># mat[fila, columna]</pre>
<pre>mat[,c(1, 3)] [,1] [,2] [1,] 1 3 [2,] -2 6 [3,] 8 9</pre>	
A <- array(data = 1:27, A[2, 2, 3] [1] 23	$\dim = c(3, 3, 3)$

Representing mathematical objects

Heterogeneous structures

Lists and tables

- It contains structures of different types, or even contain a list
- They can also be of different length

Time to program

```
x + y
x * 3
x / v
x^3
1:5
                                     # Use colon ":" to indicate sequences
5:1
y <- c(1, −2, 8, 5, 5e5)
y[3]
                                     # Extract items
[1] 8
y[-2]
                                     # Negative numbers to delete elements
[1] 1 8 5 5e5
v[2:3]
                                     # Extract sequence of elements
# Name items to create "dictionaries"
v <- c("a" = 1, "b" = -2, "c" = 8, "d" = 5, "e" = 5e5)
y["d"]
[1] 5
y[y > 5]
                                     # Extract elements using logical tests ( también ==, >=, <= )</pre>
   С
         е
8e+00 5e+05
```


Tables

Data.fame

- Intuitively, data.frame is the classic way to represent information in our minds.
- Like excel sheet
- Each column represents a vector
- Each row a case

Field Name	Area	Slope	Vegetation
Nash's Field	3.6	11	Grassland
Silwood Bottom	5.1	2	Arable
Nursery Field	2.8	3	Grassland
Rush Meadow	2.4	5	Meadow
Gunness' Thicket	3.8	0	Scrub
Oak Mead	3.1	2	Grassland
Church Field	3.5	3	Grassland

Create by adding pre-existing vectors

table <- data.frame(Field_N, Area, Slope, Vegetation)</pre>

Join tables

```
table <- cbind(Field_N, Area, Slope, Vegetation)
table <- rbind(table 1, table 2)</pre>
```

Also via read.*

table <- read.csv(«path/to/my/file")</pre>

Tables

Data.fame

- Intuitively, data.frame is the classic way to represent information in our minds.
- Like excel sheet
- Each column represents a vector
- Each row a case

Field Name	Area	Slope	Vegetation	Soil pH	
Nash's Field	3.6	11	Grassland	4.1	
Silwood Bottom	5.1	2	Arable	5.2	
Nursery Field	2.8	3	Grassland	4.3	
Rush Meadow	2.4	5	Meadow	4.9	
Gunness' Thicket	3.8	0	Scrub	4.2	
Oak Mead	3.1	2	Grassland	3.9	
Church Field	3.5	3	Grassland	4.2	

head(table)
tail(table)
str(table)

table\$Area
mean(table\$Slope)

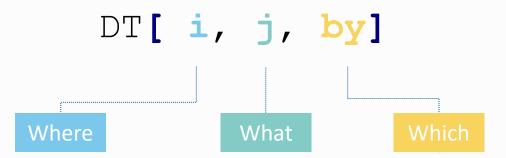
summary(table)

table[1, 2]
table[, 2:3]
table[, "nombre"

Exploring head/tail values

Expose values

Access values as matrix


table[, "nombre"] # Access values via naming

Data.table

An expansion to data.frame

Properties

- Syntax and usage is similar to data.frame
- It's extremely fast
- It offers tools for:
- Data aggregate
 - Update cells
 - Join tables
- Allows elegant notation
- No dependencies

Data.table

Continuation

matrix(data.table)
d <- data.table(mtcars, keep.rownames = TRUE)</pre>

>	rn	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
1:	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
2:	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
3:	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
4:	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
5:	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
6:	Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1
7:	Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4

How to perform simple extraction operations?

Data.table

Continuation

```
# Summarise data
d[, .(g mean = mean(cyl)),
                           # By group
           by = gear]
d[, .(g mean2 = mean(cyl)),
           by = .(qear, vs)]
                                  # Multiple groups
d[, Ref col mean := mean(hp),
                                   # Multiple-groups and create a new column
           by = .(qear, vs)]
d[, .("mean hp", "mean cyl"):=
                                    # Multiple-groups and multiple columns
           .(mean(hp),
             mean(cyl),
           by = .(gear, vs)]
d[, mean(wt[vs == 0])/mean(wt[vs == 1])] # Vector within a column
```

Time to program For example

```
# Summarise data
d <- data.table(mtcars)</pre>
d[, .(m = mean(cyl)),
                                          # By group
            by = gear]
d[, .(m = mean(cyl)),
            by = .(gear, vs)]
                                          # Multiple groups
d[, m hp := mean(hp),
                                          # Multiple-groups and create a new column
            by = .(qear, vs)]
d[, c("m hp", "m cyl"):=
                                          # Multiple-groups and multiple columns
            .(mean(hp),
             mean(cyl)),
            by = .(gear, vs)]
d[, mean(wt[vs == 0])/mean(wt[vs == 1])] # Vector within a column
```


The %>% operator

- One of the most useful and powerful elements of R.
- The operator "%>% helps structure the code and minimizes the creation of "transitional variables.
- Requires package magrittr O tidyverse.
- The basic idea:
 - x %>% f is f(x)
 - x %>% f %>% g %>% h is
 h(g(f(x)))

Placeholder Object %>% function1(.) 8>8 function2(.) -> result

The %>% operator

- One of the most useful and powerful elements of R.
- The operator "%>% helps structure the code and minimizes the creation of "transitional variables.
- Requires package magrittr O tidyverse.
- The basic idea:
 - x %>% f is f(x)
 - x %>% f %>% g %>% h is
 h(g(f(x)))

Example: Representing averages by group

```
# Extract values
                                             Stack of lazy
Subset <- table[ table$a > "Value x"]
                                             variables
# Sumity the information
mus <- aggregate(test ~ condition, Subset, FUN = mean)</pre>
stds <- aggregate(test ~ condition, Subset, FUN = sd)</pre>
summary Ss <- merge(mus, stds, by = "condition")</pre>
 # Create the graph
colnames(summary Ss)<- c("condition", "mus", "stds")</pre>
ggplot(summary Ss, aes(x = condition, y = mus)) +
       geom point() +
       geom errorbar(aes(ymin = mus - stds,
                          ymax = mus +
                                           stds)) +
       theme bw()
```


The %>% operator

- One of the most useful and powerful elements of R.
- The operator "%>% helps structure the code and minimizes the creation of "transitional variables.
- Requires package magrittr O tidyverse.
- The basic idea:
 - x %>% f is f(x)
 - x %>% f %>% g %>% h is
 h(g(f(x)))

Example: Representing averages by group Code Unreadable

The %>% operator

- One of the most useful and powerful elements of R.
- The operator "%>% helps structure the code and minimizes the creation of "transitional variables.
- Requires package magrittr O tidyverse.
- The basic idea:
 - x %>% f is f(x)
 - x %>% f %>% g %>% h is
 h(g(f(x)))

Example: Representing averages by group

```
table[a > "value_x" ] %>% # filter
   .[, .(mus = mean(test),
        stds = sd(test),
        by = condition] %>% # Calculate parameters
# Graphical representation
ggplot(., aes(x = condition, y = mus) +
```

```
gepict(., des(x = condition, y = mus) +
geom_point()
geom_errorbar(aes(ymin = mus - stds,
ymax = mus + stds) +
thome by()
```

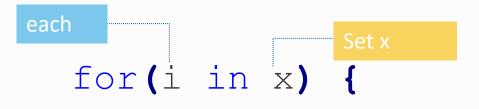
theme_bw()

Time to program

```
install.packages(magrittr)
install.packages(ggplot2)
library(ggplot2)
library(magrittr)
library(data.table)
data("mtcars") # Load data
d <- data.table(mtcars, keep.rownames = T)</pre>
```

```
d[ cyl > 3] %>%
    ggplot(., aes(x = disp, y = wt)) +
    geom_point() +
    theme_bw()
```

```
d %>%
lm(formula = disp ~ wt, data = .) %>%
summary
```



The essence of **programming**

What are they?

Computers are especially useful when the task requires repetition

- R provides us with three basic tools to repeat:
 - For
 - The of *apply family
- In addition, it is possible to filter with logical tests:
 - if
 - ifelse

operation

```
# Generate a sample dataset
set.seed(2018)
d <- data.frame(replicate(6, sample(c(1:10, -99), 100, rep = TRUE)))</pre>
names(d) <- letters[1:6]</pre>
head(d)
 a b
        c d e f
1 4 7 - 99 9 9 2
262810610
3 1 -99 9 3 4 1
4 3 7 7 7 -99 6
How do I calculate the mean of each column?
mean(d$a)
mean(d$b)
mean(d$b)
mean(d$d)
mean(d$e)
```

```
# Looping with for
for (i in 1:ncol(d)) {
                                    # Using ":" to generate sequence of 1 to the number of columns
            x <- mean(d[[i]])</pre>
            print(x)
            }
# If we want to save the result, first we create an empty vector (or other format)
medias <- rep(NA, ncol(d))</pre>
for (i in seq along(medias)) {
            x <- mean(d[[i]])  # We iterate by column</pre>
            medias[i] <- x  # Save the result in the vector "means", position "i"</pre>
}
```


The essence of $\,{\rm R}\,$

What are they?

Computers are especially useful when the task requires repetition

- R provides us with three basic tools to repeat:
 - For
 - The of *apply family
- In addition, it is possible to filter with logical tests:
 - if
 - ifelse

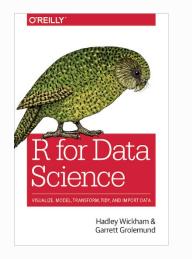
```
# Iteration-*apply
medias <- apply(X = d, MARGIN = 2, FUN = mean)
> medias
    a    b    c    d    e    f
-4.26 -4.75 -1.85 -5.92 -4.43 1.40
# If we also want to specify other arguments, we can indicate them at the end
apply(X = d, MARGIN = 2, FUN = quantile, probs = c(0.1, 0.5, 0.9))
> a    b    c    d    e    f
10% 1 -9 1 -99 -9 1
50% 4   55    5    6    5
90% 9    9    9     10 10
```

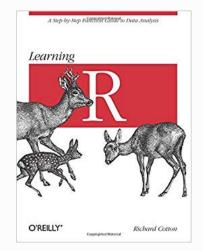

Basic programming

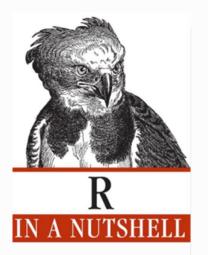
What are they?

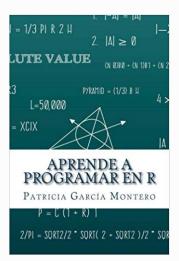
Computers are especially useful when the task requires repetition

- R provides us with three basic tools to repeat:
 - For
 - The of *apply family
- In addition, it is possible to filter with logical tests:
 - if
 - ifelse


ifelse(test = ***, yes = Accion_A, no = Accion_B)


```
# Basic if loop
print( "We are the best!")
# Nested if loop
if (publisher == "science") {
 print ("We are the best")
} else if ( publisher == "arXiV" ) {  # else if allow us to make another question
 print ("Andres will kill you" )
} else {
                                  # Only else resolve all the remaining cases
 print ("If you look for me, I am in the crying room")
# Iterate throught if-test throught a vector
all papers <- c("accepted", "accepted", "accepted", "rejected")
ifelse(all papers == "accepted",
          print("Fantastic, it's a science?"),
          print ("If you look for me, I am in the crying room")
```


```
Looping with *apply
d <- apply(d, 2, function(x) {ifelse(x == -99, NA, x)})
medias \langle - \text{ apply}(X = d, \text{ MARGIN} = 2, \text{ FUN} = \text{mean})
# Looping with *apply and the pipe operator
medias <- apply(d, 2, function(x) {tmp <- ifelse(x == -99, NA, x)}) %>%
            apply(X = ., MARGIN = 2, FUN = mean, na.rm = TRUE)
medias
# looping with*apply
medias <- apply(d, 2, function(x) {tmp <- ifelse(x == -99, NA, x)</pre>
                                    mean(tmp, na.rm = TRUE) })
> medias
      Х1
            X2 X3 X4 X5
                                               X6
5.585106 5.369565 5.263736 5.866667 5.423913 5.217391
```


Support channels

Online resources

R for Data Science, H. Wickham & G. Grolemund

Learning R, R. Cotton R in a nutshell, J. Adler Aprender a programar en R P. García Montero

iGracias por Preguntas? vuestro tiempo!