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Learning to program is learning to think
The goal

Learning R in a workshop is an impossible task. Hence, our goal is to
illustrate the capabilities of this tool. How programming can make
your work much easier.
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Why learn R?
A way to represent ideas
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Age Sex District Shamba Trypanosoma Filaria
25 M Sese Island Sewana + +
20 M Sese Island Kaganda I - +
25 M Sese Island Semagala I + +
30 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
25 M Sese Island Buvovu I - +
25 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
30 M Sese Island Buvu I - +
35 M Sese Island Semagala I - -
20 M Sese Island Semagala I - -
…… …… …… …… …… ……
…… …… …… …… …… ……
…… …… …… …… …… ……
25 M Sese Island Semagala I + -
35 M Sese Island Bunami I + +

Presenter Notes
Presentation Notes
Statistics seems something we have to do in order to organise our inferences about the world. 
So let´s say we have a list of cars, so we know their efficiency and power.
The list as such doesn’t tell us much. 
We could, however, arrange the data in such a way that we could observe new relations. 
This allow us to model the data in such a way that if we had a question about a car we have never seem, we could answer with quite good accuracy.
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Age Sex District Shamba Trypanosoma Filaria
25 M Sese Island Sewana + +
20 M Sese Island Kaganda I - +
25 M Sese Island Semagala I + +
30 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
25 M Sese Island Buvovu I - +
25 M Sese Island Kaganda I - +
20 M Sese Island Semagala I - +
30 M Sese Island Buvu I - +
35 M Sese Island Semagala I - -
20 M Sese Island Semagala I - -
…… …… …… …… …… ……
…… …… …… …… …… ……
…… …… …… …… …… ……
25 M Sese Island Semagala I + -
35 M Sese Island Bunami I + + Dr D. Bruce, 1903

Presenter Notes
Presentation Notes
Statistics seems something we have to do in order to organise our inferences about the world. 
So let´s say we have a list of cars, so we know their efficiency and power.
The list as such doesn’t tell us much. 
We could, however, arrange the data in such a way that we could observe new relations. 
This allow us to model the data in such a way that if we had a question about a car we have never seem, we could answer with quite good accuracy.
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So let´s say we have a list of cars, so we know their efficiency and power.
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This allow us to model the data in such a way that if we had a question about a car we have never seem, we could answer with quite good accuracy.




The cycle of data analysis
One ring to model them all
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Information

Explore

Abstraction

Validation



What’s R
A tool to make life easier
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Dynamic programming

Open source

Active community

Endless packages

Presenter Notes
Presentation Notes
Orientado a estadística�Dentro del campo del análisis de datos, R te permite realizar cualquier tipo de abstración que te imagines

Comunidad muy activa�La facilidad de uso permite a los usuarios subir “paquetes” con nuevas funciones. Esto nos permite empezar nuestro trabajo donde otros terminaro.

Desventajas�R en si no es un lenguaje de programación, sino un entorno. Como consecuencia, esto ha hecho que a nivel de rendimiento y flexibilidad R no esté a la altura de otros lenguajes como python





How was my first experience
What’s R?
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Presenter Notes
Presentation Notes
R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues. R can be considered as a different implementation of S. There are some important differences, but much code written for S runs unaltered under R.

R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, …) and graphical techniques, and is highly extensible. 

Many users think of R as a statistics system. We prefer to think of it of an environment within which statistical techniques are implemented. R can be extended (easily) via packages. 

The best thing about R it is that it was developed by statisticians. The worst thing about R is that… it was developed by statisticians. Bo Cowgill.



Arrange files and folders
Thinking in hierarchical order
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® http://nikola.me/folder_structure.html

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 


http://nikola.me/folder_structure.html


Arrange files and folders
Naming… really matters?
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Copyright: http://10pm.com/

What I do

Will we remember what does it means at 
the end of the thesis or Project? Avoid: ?, $,%, ^, &, *, (, ),-,#, ?,,,<,>, /, |, \, [ ,] ,{, and }; 

EXP_AAAAMMDD_NOMBRE_VX.X.csv

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 


http://10pm.com/


RStudio
A helper in our quest
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Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




Inside R
RStudio
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Terminal

Editor

Plots, files, packages….

Objects and variables



Inside R
Importing data 
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Inside R
Exploring datasets
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For example
Time to program



The foundation of R
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Input Output

The heir of mathematical notation

𝐴𝐴 = 𝑓𝑓(𝑟𝑟) = 𝜋𝜋𝑟𝑟2

𝑆𝑆 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 =

𝑑𝑑𝑓𝑓(𝑟𝑟)
𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝑟𝑟

𝑓𝑓(𝑥𝑥)

Presenter Notes
Presentation Notes
Una función “f de r” nos permite transformar de radio a área
Una función puede ser otra función
El input esperado de una función siempre ha de ser el mismo



The foundation of R
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Input OutputFunction

Body

Environment

Args.

Functional programming

Presenter Notes
Presentation Notes
For now, just remember that you do things in R by creating and manipulating named objects. You manipulate objects by feeding information about them to functions. The functions do something useful with that information (calculate a mean, recode a variable, fit a model) and give you the results back.




Action <- function(x, y = 0) {

z <- x + y 

return(z)

}

But… what’s a  function?

R like a super-calc on steroids
18

• Args: List of items, specified by order or name.
• Body: Transformations upon the arguments.
• Env: Variables accessible within the body.

The 3 elements
specify “x” and “y”

Default “y” when 
we don’t specify itAdd “x” e “y”

Return the result



But… what’s a  function?

R like a super-calc on steroids
19

# Intro to functions

runif(n = 10, min = 3, max = 10) # This function generates 10 random numb between 3 and 10
runif(10, 3, 10) # Same but using argument position as reference

runif(n = 10) # Get 10 random numbers within the default range
runif(10) # 10 random numbers within the default range setting n by position

runif(min = -1, n = 3) # Using the name allows the order to be alter

# Basic math functions
1 + 8

2 - 9

2 * 3

5/3



Logic operations

R like a super-calc on steroids
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x == y # Is x equal to y
identical(x, y) # Same as == but using a function
!x # Negate (or logic inversión) of x
x & y # Is x AND y True?
x | y # Is x OR y True?
x < y # Is X Lower than y
x > y # Is X Bigger than y
x <= y # Is X Lower or equal than y
x >= y # Is X Bigger or equal than y
x != y # Is x different from y
xor() # Is only X or Y True?
isTrue() # Is true?



In R you have a function for everything
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A <- ... # Assigning a variable
c(object, object,...) # Concatenate SAME type objects within a vector
length(object) # Number of elements in an object
str(object) # Show the internal structure of an object 
class(object) # Show the class of an object
names(object) # Names of the elements 
rm(object) # Remove the object
mean(vector) # Media
median(vector) # Median
sd(vector) # Standard deviation
sqrt(vector) # Square root
log(vector) # Natural logarithm
exp(vector) # E to the power of..

summary() # Summary 
getwd() # Where we are working
read.delim() # Imporf files (also read.csv, read.csv2, read.txt, read.table)

R like a super-calc on steroids



mean(1:5, 0.1)
mean(x = 1:5, trim = 0.1)
mean(1:5, trim = 0.1)
mean(x = 1:5, 0.1)

For example
Time to program



The R packages
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Families of functions comes in packages

• The R community that develops related functions adds them in a library that other users can 
download and install.

• This allows us to start our work where others finished and focus our efforts on a single problem.
• They are usually accompanied by instruction books called " vignette " that explain how to use 

the functions of the library.
•

install.package(data.table) # Install library from CRAN 
devtools::install_github("/paul-buerkner/brms") # Install from GitHub 

library(tidyverse) # Load library 
data.table::melt.data.table() # Calling a function from a 

# library 

What they are

[image taken from Ryan 
Wesslen presentation]

Presenter Notes
Presentation Notes
La comunidad de R que desarrolla funciones relacionadas las agrega en una librería que otros usuarios puede descargar e instalar
Esto nos permite empezar nuestro trabajo donde otros terminaron y concentrar nuestro esfuerzo en una solo problema
Suelen venir acompañados de libros de instrucciones llamados “vignette” que nos explican como usar las funciones de la librería
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• In this workshop we will work with the 
following bookstores: data.table, magrittr, 
ggplot, glmmTMB, mgcv

• Beware of using too many libraries:
• Overlapping functions with the same name
• Reproducibility on other computers

The R packages
Families of functions comes in packages

[image taken from Ryan Wesslen presentation]

Presenter Notes
Presentation Notes
En este taller trabajaremos con los siguientes librerías: data.table, magrittr, ggplot, glmmTMB, mgcv



First contact
Representing mathematical objects
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Vectors

•0, -8, 3.14…

Numeric: ℝ

•TRUE, FALSE, T, F

Logic: 1|0

•“Que”, “es”, “eso”,  “Eso es Queso”

Character

𝑋𝑋 = 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥𝑖𝑖 … … 𝑥𝑥𝑛𝑛 1 + 1 # Hashtag to write down comments
Nombre_x <- valor # Define objects with the operator <-
y <- 1                      

Principles for naming a variable
• Start with a character, no irregular caraters (&, %, ^, …)
• Brief and descriptive. 
• For compound names connect with _

`<-`(x, 2) # Assign
x <- y <- 1 # Assign multiple elements 
y <- c(1, -2, 8, 5, 5e5)  # Manually define a vector
z <- c("A", "B", "C")     # Character vectors
x <- c(FALSE, TRUE, F, T) # Logic
x <- c(1L, 2L, 43L) # Integer

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




First contact
Representing mathematical objects
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x + y 
x * 3
x / y 
x^3
1:5 # Dos puntos ":" para indicar secuencias
5:1
y <- c(1, -2, 8, 5, 5e5)    
y[3] # Extraer elementos
[1] 8
y[-2] # Numeros negativos para excluir elementos
[1] 1  8  5  5e5
y[2:3] # Extraer secuencia de elementos

# Nombrar elementos para crear diccionarios
y <- c("a" = 1, "b" = -2, "c" = 8, "d" = 5, "e" = 5e5)
y[“d"]
[1] 5
y[y > 5] # Extraer elementos usando test lógicos ( también ==, >=, <= )

c     e 
8e+00 5e+05 

Vectors

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




First contact
Representing mathematical objects
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# If two vectors have different length, the shorter one is recycled it will recycle to equal the 
length of the longest with the longest vector. 

x = c(10, 20, 30)
y = c(1, 2, 3, 4, 5, 6, 7, 8, 9)

> y + x
# R uses "y" as a 9-element vector and "x" will repeat it 3 times

[1] 11 22 33 14 25 36 17 28 39

Recycling

Presenter Notes
Presentation Notes
If two vectors are of unequal length, the shorter one will be recycled in order to match the longer vector. For example, the following vectors u and v have different lengths, and their sum is computed by recycling values of the shorter vector u. 



First contact
Representing mathematical objects
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Homogeneous 
structures

mat <- matrix(c(1, -2, 8, 5, 7, 0, 3, 6, 9), 
nrow = 3, ncol = 3)

mat[4] # Use array as vector 
[1] 5

mat[1, 2] # mat[fila, columna]
[1] 5

mat[ ,c(1, 3)]
[,1] [,2] 

[1,]  1   3 
[2,] -2   6 
[3,]  8   9

A <- array(data = 1:27, dim = c(3, 3, 3))
A[ 2, 2, 3]
[1] 23

Principles for naming a variable
Within R, a matrix is a vector with two extra 
attributes:

– Rows
– Columns

[source: University of Cantabria]

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




First contact
Representing mathematical objects
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Heterogeneous structures
mat <- matrix(c(1, -2, 8, 5), nrow = 2, ncol = 2)
mat[1, 2] # mat[fila, columna]
[1] 8
Animals <- list("a" = c(1, 4, 5, 2), 

"b" = c("Cow", "Pig", “Chicken"))

Animals[["a"]][1] # [[ to access each item
Animals$a[1] # $ to access every element

Lists and tables
• It contains structures of different types, or 

even contain a list 
• They can also be of different length

[source: University of Cantabria]

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




x + y 
x * 3
x / y 
x^3
1:5 # Use colon ":" to indicate sequences 
5:1
y <- c(1, -2, 8, 5, 5e5)    
y[3] # Extract items
[1] 8
y[-2] # Negative numbers to delete elements
[1] 1  8  5  5e5
y[2:3] # Extract sequence of elements
# Name items to create “dictionaries”
y <- c("a" = 1, "b" = -2, "c" = 8, "d" = 5, "e" = 5e5)
y[“d"]
[1] 5
y[y > 5] # Extract elements using logical tests ( también ==, >=, <= )

c     e 
8e+00 5e+05 

For example
Time to program



Tables
Data.fame

31

table <- data.frame(Field_N = c(“Nash`s", “Silwood", “Nursery",
“Rush", “Gunness", “Oak Mead", “Church Field"),         

Area = c(3.6, 5.1, 2.8, 2.4, 3.8, 3.1, 3.5),
Slope = c(11, 2, 3, 5, 0, 2 , 3),
Vegetation = c(“Grass", “Arabl", “Grass",

“Meadow", “Scrub", “Grass", “Grass"))

# Create by adding pre-existing vectors

table <- data.frame(Field_N, Area, Slope, Vegetation)

# Join tables

table <- cbind(Field_N, Area, Slope, Vegetation)
table <- rbind(table_1, table_2)

# Also via read.*

table <- read.csv(«path/to/my/file")

• Intuitively, data.frame is the classic way to 
represent information in our minds.

• Like excel sheet
• Each column represents a vector 
• Each row a case

Presenter Notes
Presentation Notes
A data frame is a set of rows and columns.
Each row is of the same length and data type
Every column is of the same length but can be of differing data types
A data frame has characteristics of both a matrix and a list
Bracket notation is the customary method of indexing into a data frame



Tables
Data.fame
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head(table) # Exploring head/tail values
tail(table)
str(table)

table$Area # Expose values
mean(table$Slope)

summary(table)

table[1, 2] # Access values as matrix
table[, 2:3]
table[, "nombre"] # Access values via naming

• Intuitively, data.frame is the classic way to 
represent information in our minds.

• Like excel sheet
• Each column represents a vector 
• Each row a case

Presenter Notes
Presentation Notes
A data frame is a set of rows and columns.
Each row is of the same length and data type
Every column is of the same length but can be of differing data types
A data frame has characteristics of both a matrix and a list
Bracket notation is the customary method of indexing into a data frame



An expansion to data.frame

Data.table
33

Properties
• Syntax and usage is similar to 

data.frame

• It's extremely fast
• It offers tools for: 
• Data aggregate

– Update cells
– Join tables

• Allows elegant notation
• No dependencies

DT[ i, j, by]

Where What Which



Data.table
Continuation

34

matrix(data.table)
d <- data.table(mtcars, keep.rownames = TRUE)

> rn mpg cyl disp hp drat wt qsec vs am gear carb
1:           Mazda RX4 21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
2:       Mazda RX4 Wag 21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
3:          Datsun 710 22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
4:      Hornet 4 Drive 21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
5:   Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
6:             Valiant 18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
7:          Duster 360 14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4

# How to perform simple extraction operations?

d[cyl > 4] # Filter with a simple logical test 

d[rn %in% c("Mazda RX4", "Hornet Sportabout")] # Elementros within a vector

d[rn %like% "Mazda"] # Extract similar elements 

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




Data.table
Continuation

35

# Summarise data

d[, .(g_mean = mean(cyl)), # By group 
by = gear]

d[, .(g_mean2 = mean(cyl)), 
by = .(gear, vs)] # Multiple groups

d[, Ref_col_mean := mean(hp), # Multiple-groups and create a new column
by = .(gear, vs)]

d[, .(“mean_hp", “mean_cyl"):= # Multiple-groups and multiple columns
.(mean(hp), 

mean(cyl), 
by = .(gear, vs)]

d[, mean(wt[vs == 0])/mean(wt[vs == 1])] # Vector within a column

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




# Summarise data

d <- data.table(mtcars)
d[, .(m = mean(cyl)), # By group 

by = gear]

d[, .(m = mean(cyl)), 
by = .(gear, vs)] # Multiple groups 

d[, m_hp := mean(hp), # Multiple-groups and create a new column 
by = .(gear, vs)]

d[, c(“m_hp", “m_cyl"):= # Multiple-groups and multiple columns
.(mean(hp), 

mean(cyl)), 
by = .(gear, vs)]

d[, mean(wt[vs == 0])/mean(wt[vs == 1])] # Vector within a column

For example
Time to program



Pipes
Moving  A %>% B
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The %>% operator
• One of the most useful and powerful 

elements of R.
• The operator ¨%>% helps structure the code 

and minimizes the creation of "transitional 
variables.

• Requires package magrittr o tidyverse.
• The basic idea:

– x %>% f is f(x)
– x %>% f %>% g %>% h is 

h(g(f(x)))

Object %>% 
function1(.) %>%
function2(.) ->
result

Placeholder

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




Pipes
38

The %>% operator
• One of the most useful and powerful 

elements of R.
• The operator ¨%>% helps structure the code 

and minimizes the creation of "transitional 
variables.

• Requires package magrittr o tidyverse.
• The basic idea:

– x %>% f is f(x)
– x %>% f %>% g %>% h is 

h(g(f(x)))

# Extract values
Subset <- table[ table$a > "Value_x"]
# Sumity the information
mus <- aggregate(test ~ condition, Subset, FUN = mean)
stds <- aggregate(test ~ condition, Subset, FUN = sd)
summary_Ss <- merge(mus, stds, by = "condition")

# Create the graph
colnames(summary_Ss)<- c("condition","mus","stds")
ggplot(summary_Ss, aes(x = condition, y = mus)) +

geom_point() +
geom_errorbar(aes(ymin = mus - stds, 

ymax = mus + stds)) +
theme_bw()

Example: Representing averages by group

Stack of lazy 
variables

Moving A %>% B

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 
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The %>% operator
• One of the most useful and powerful 

elements of R.
• The operator ¨%>% helps structure the code 

and minimizes the creation of "transitional 
variables.

• Requires package magrittr o tidyverse.
• The basic idea:

– x %>% f is f(x)
– x %>% f %>% g %>% h is 

h(g(f(x)))

summary_Ss <- merge(aggregate(test ~ condition, 
table[, table$a > "valor_x"], 

FUN = mean), 
aggregate(test ~ condition, 

table[, table$a > "valor_x"], 
FUN = sd), by = "condition")

# Create the graph
colnames(summary_Ss)<- c("condition","mus","stds")
ggplot(summary_Ss, aes(x = condition, y = mus)) +

geom_point() +
geom_errorbar(aes(ymin = mus - stds, 

ymax = mus + stds)) +
theme_bw()

Example: Representing averages by group Code Unreadable

Moving A %>% B

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




Pipes
40

table[a > “value_x" ] %>% # filter
.[, .(mus = mean(test), 

stds = sd(test), 
by = condition] %>% # Calculate parameters 

# Graphical representation 
ggplot(., aes(x = condition, y = mus) +

geom_point()
geom_errorbar(aes(ymin = mus - stds, 

ymax = mus + stds) +
theme_bw()

Example: Representing averages by group

The %>% operator
• One of the most useful and powerful 

elements of R.
• The operator ¨%>% helps structure the code 

and minimizes the creation of "transitional 
variables.

• Requires package magrittr o tidyverse.
• The basic idea:

– x %>% f is f(x)
– x %>% f %>% g %>% h is 

h(g(f(x)))

Moving A %>% B

Presenter Notes
Presentation Notes
Even if you work alone, it is useful, and it can also be used for text files, e.g. if you use markdown/knitr/Sweave combos (see Reproducible Research). I use Git with Dropbox to track my progress both for code and reports. 
Each project has its own working directory. You can achieve that in bare R, but R studio manages this automatically. 
The same goes for your workspace, each project has a separate one. 
Source files you had open in re-loaded project will open automatically. 

La organización de archivos de forma sistemática permite trabajar de forma dinámica con la información
Carpetas y 




install.packages(magrittr)
install.packages(ggplot2)
library(ggplot2)
library(magrittr)
library(data.table)
data("mtcars") # Load data
d <- data.table(mtcars, keep.rownames = T)

d[ cyl > 3] %>%
ggplot(., aes(x = disp, y = wt)) +
geom_point() +
theme_bw()

d %>%
lm(formula = disp ~ wt, data = .) %>%
summary

For example
Time to program
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What are they?
Computers are especially useful when the task 
requires repetition
• R provides us with three basic tools to 

repeat:
– For

– The of *apply family
• In addition, it is possible to filter with logical 

tests:
– if

– ifelse

for(i in x) {

operation

}

each
Set x

Presenter Notes
Presentation Notes
Las personas somos increíblemente buenas en 

But that breaks our rule of thumb: never copy and paste more than twice. Instead, we could use a for loop:
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# Generate a sample dataset 

set.seed(2018)

d <- data.frame(replicate(6, sample(c(1:10, -99), 100, rep = TRUE)))
names(d) <- letters[1:6]
head(d)
a   b   c  d   e  f

1 4   7 -99  9   9  2
2 6   2   8 10   6 10
3 1 -99   9  3   4  1
4 3   7   7  7 -99  6

How do I calculate the mean of each column?
mean(d$a)
mean(d$b)
mean(d$b)
mean(d$d)
mean(d$e)
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# Looping with for

for (i in 1:ncol(d)) { # Using ":" to generate sequence of 1 to the number of columns

x <- mean(d[[i]])
print(x)
}

# If we want to save the result, first we create an empty vector (or other format) 

medias <- rep(NA, ncol(d))

for (i in seq_along(medias)) {

x <- mean(d[[i]]) # We iterate by column
medias[i] <- x # Save the result in the vector "means", position "i"

}
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*apply(x, Fun = f(x) )

To x apply function f

What are they?
Computers are especially useful when the task 
requires repetition
• R provides us with three basic tools to 

repeat:
– For

– The of *apply family
• In addition, it is possible to filter with logical 

tests:
– if

– ifelse

Presenter Notes
Presentation Notes
Las personas somos increíblemente buenas en 

But that breaks our rule of thumb: never copy and paste more than twice. Instead, we could use a for loop:




Loops and functionals
An example

46

# Iteration-*apply

medias <- apply(X = d, MARGIN = 2, FUN = mean)

> medias 
a     b     c     d     e    f 

-4.26 -4.75 -1.85 -5.92 -4.43 1.40 

# If we also want to specify other arguments, we can indicate them at the end

apply(X = d, MARGIN = 2, FUN = quantile, probs = c(0.1, 0.5, 0.9))

> a  b c   d  e  f
10% 1 -9 1 -99 -9  1
50% 4  5 5   5  6  5
90% 9  9 9   9 10 10
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What are they?
Computers are especially useful when the task 
requires repetition
• R provides us with three basic tools to 

repeat:
– For

– The of *apply family
• In addition, it is possible to filter with logical 

tests:
– if

– ifelse

ifelse(test = ***,
yes = Accion_A,
no = Accion_B)

Presenter Notes
Presentation Notes
Las personas somos increíblemente buenas en 

But that breaks our rule of thumb: never copy and paste more than twice. Instead, we could use a for loop:
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# Basic if loop
if (paper_acepted == TRUE) { # Notice, it only accepts 1 element at a time

print( “We are the best!")

}
# Nested if loop
if (publisher == “science”) {

print (“We are the best”)
} else if ( publisher == “arXiV” ){    # else if allow us to make another question

print (“Andres will kill you” )
} else { # Only else resolve all the remaining cases

print (“If you look for me, I am in the crying room”)
}
# Iterate throught if-test throught a vector

all_papers <- c(“accepted”, “accepted”, “accepted”, “rejected”)

ifelse(all_papers == “accepted”,
print(“Fantastic, it’s a science?”),
print(“If you look for me, I am in the crying room”)
)
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Looping with *apply
d <- apply(d, 2, function(x) {ifelse(x == -99, NA, x)})
medias <- apply(X = d, MARGIN = 2, FUN = mean)

# Looping with *apply and the pipe operator

medias <- apply(d, 2, function(x) {tmp <- ifelse(x == -99, NA, x)}) %>%
apply(X = ., MARGIN = 2, FUN = mean, na.rm = TRUE)

medias 

# looping with*apply

medias <- apply(d, 2, function(x) {tmp <- ifelse(x == -99, NA, x)
mean(tmp, na.rm = TRUE)})

> medias 
X1       X2       X3       X4       X5       X6 

5.585106 5.369565 5.263736 5.866667 5.423913 5.217391 



Online resources

Support channels
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R for Data Science,
H. Wickham &
G. Grolemund

R in a nutshell,
J. Adler

Aprender a 
programar en R
P. García Montero

Learning R,
R. Cotton



¡Gracias por 
vuestro tiempo!

¿Preguntas?
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